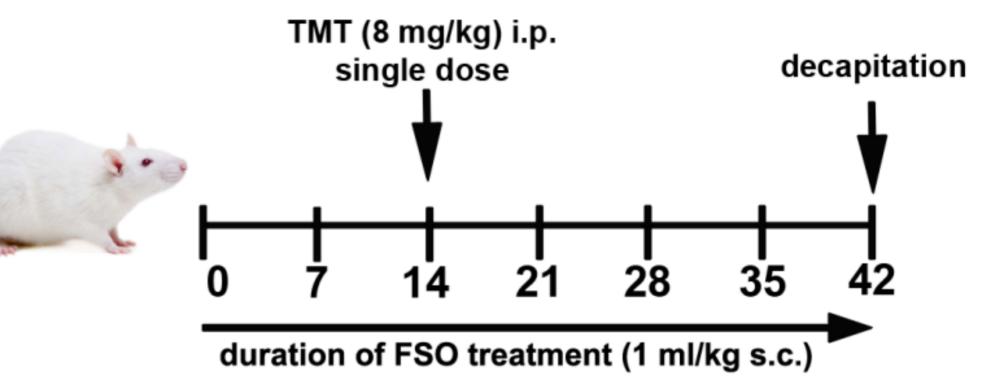
Flaxseed oil as a neuroprotective agent during trimethyltin-induced neurodegeneration in female rats

<u>Nataša Mitrović¹, Milorad Dragić², Marina Zarić Kontić¹, Jelena Martinović¹, and Ivana Grković¹</u>

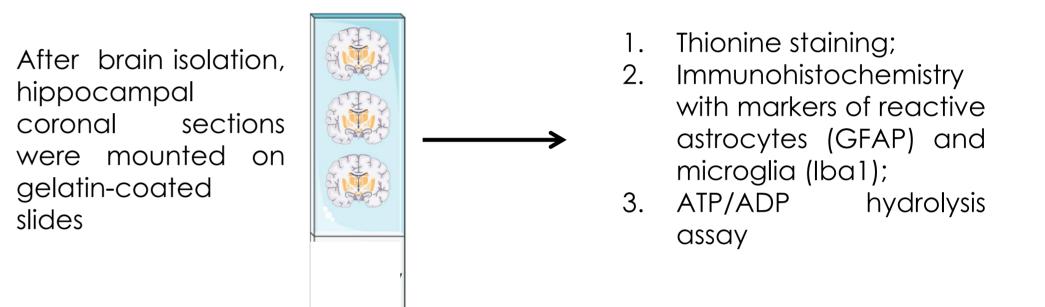
Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia


² Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia

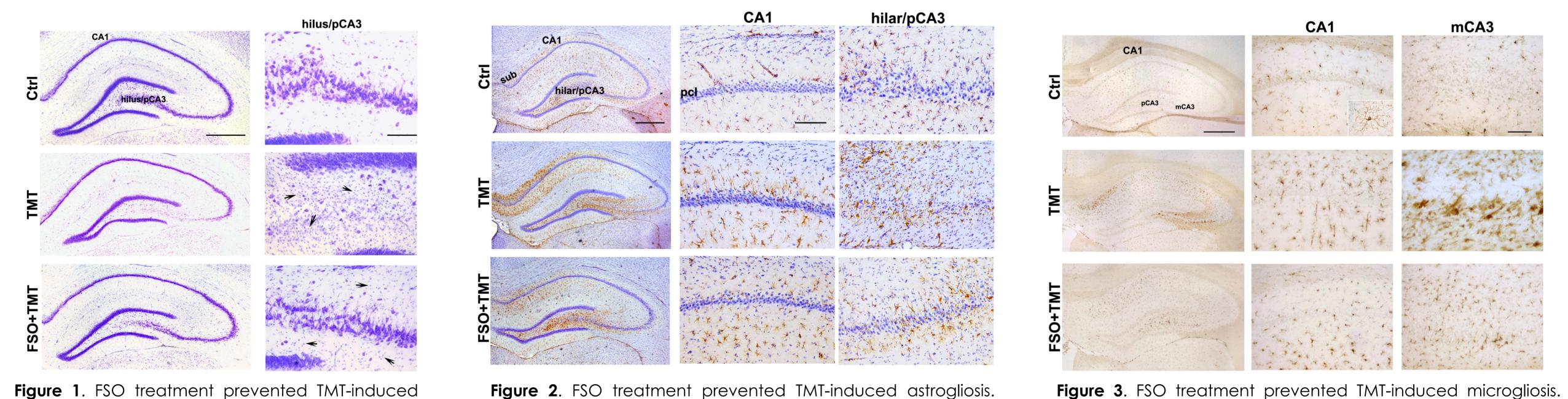
INTRODUCTION

Flaxseed oil (or linseed oil, FSO) derived from the seeds of the flax (Linum usitatissimum L.) gained worldwide awareness as a functional food, with potent neuroprotective properties.

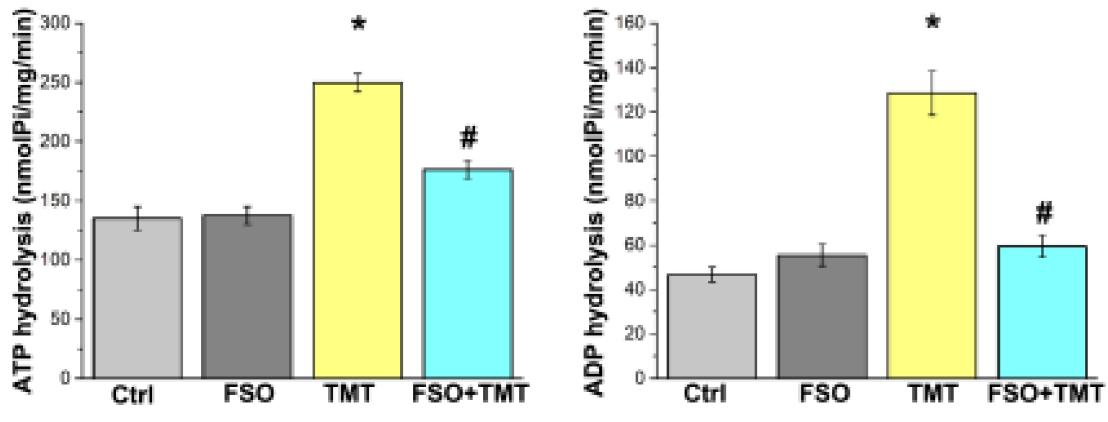
Following nervous system injury, cells massively release adenosine-5'-triphosphate (ATP) into the extracellular space, (a "danger signal") which levels are tightly controlled by NTPDases/ecto-5'-nucleotidase (eN) enzyme chain, which act together as an immune checkpoint since they degrade pro-inflammatory ATP and generate antiinflammatory adenosine.


METHODS

4 experimental groups


Ctrl- animals without any treatment; FSO- received FSO for 5 weeks; TMT- received a single dose of TMT, and FSO+TMT- animals pretreated with FSO for two weeks and then received a single dose of TMT and application of FSO continued for twenty one days.

Therefore the **AIM** of the present study was determine whether supplementation with FSO may prevent trimethyltin (TMT)-induced neurodegeneration and gliosis in female Wistar rats.



Results

Data have convincingly showed that FSO continuous treatment ameliorated TMT-induced neuronal loss in CA³ hippocampal region (Figure 1), ameliorated reactivation of astrocytes (Figure 2) and microglia (Figure 3) and inhibited increase in ATP/ADP hydrolysis rates (Figure 4).

Figure 1. FSO treatment prevented TMT-induced neuronal loss. Representative thionin-stained hippocampal sections showing hilaus/pCA3 subfield of DG of Ctrl animals, TMT animals, and animals treated with FSO+TMT. Scale bar applicable to lower (5x) magnifications – 500 µm and 20µm aplicable to higher (20x) magnifications.

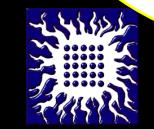
Figure 4. Specific NTPDase activity in the presence of ATP/ADP. FSO prevented TMT-induced increase in ATP/ADP hydrolysis rates. Significance level: p < 0.001 in respect to Ctrl; # p < 0.001 in respect to TMT.

Figure 2. FSO treatment prevented TMT-induced astrogliosis. Representative images of immunolabeling directed to astrocyte marker GFAP in CA1 and hilar/pCA3 subfield of DG in Ctrl, TMT, and FSO+TMT experimental groups. The high magnification images represent GFAP occurence in CA1, and hilar/pCA3 of DG. Scale bar applicable to lower (5x) magnifications – 500 µm and 20µm aplicable to higher (20x) magnifications.

Pretreatment with FSO prevented TMT-induced increase in ATP/ADP hydrolysis rates probably by preventing neuronal injury, gliosis and consequent massive release of ATP. These findings support beneficial neuroprotective properties of FSO against TMT-induced neurotoxicity and hint at a promising preventive use of FSO in hippocampal degeneration and dysfunction.

magnifications.

Representative images of immunolabeling directed to


microglial marker Iba1 in CA1 and hilar/pCA3 subfield of DG in

Ctrl, TMT, and FSO+TMT experimental groups. The high

magnification images representIbaloccurence in CA1, and

hilar/pCA3 of DG. Scale bar applicable to lower (5x)

magnifications – 500 μ m and 20 μ m aplicable to higher (20x)

Acknowledgments This work was supported by the Ministry of Education, Science and Technological Development, Contract No. 451-03-1/2021-16/14 – 0902102.